Самодельные щупы для мультиметра. ESR (ЭПС) измеритель — приставка к цифровому мультиметру Показать схемы приставок для китайских мультиметров

Среди радиолюбителей мультиметр часто называют тестером. Но правильней будет все-таки «мультиметр», так как он имеет дополнительные функции, и помимо напряжения и силы тока измеряет другие показатели в широком диапазоне. У современного прибора устройство довольно сложное, но в принципах работы интересно разобраться, чтобы понимать, как происходят измерения.

Классификация

По представлению измеряемых показателей мультиметры разделяют на аналоговые (стрелочные) и цифровые. В аналоговых тестерах отклонение стрелки на градуированной шкале показывает результат измерения. Цифровые мультиметры информацию отображают в виде цифр на жидкокристаллическом или подобном ему экране. Принципиальная схема мультиметра со стрелкой выглядит проще, чем у его собрата, поэтому зачастую для цифрового прибора в инструкции предоставляют функциональную или структурную схему.

По конструкции их можно так же разделить на два вида:

  • стационарные;
  • мобильные (карманные).

Наиболее простые – это . Они представляют собой микроамперметр с набором высокоточных резисторов большого и малого номинала, а для измерения сопротивления имеют встроенный источник питания.

Стационарные мультиметры работают от сети переменного или постоянного тока.

Как правило, это высокоточные приборы со сложной схемой, используемые в лабораториях и различных сервисных центрах. Дополнительно они имеют разъемы типа RS232, которые позволяют подключаться к компьютерам и создавать на их базе информационно-измерительные системы. В специализированных промышленных комплексах их используют в виде отдельных блоков совместно с другой аппаратурой. Кроме измерения основных параметров тока в них закладывают еще другие возможности. Некоторые могут измерять температуру, частоту, скважность, выступать в роли генератора синусоидальных или прямоугольных сигналов.

Устройство мультиметра стационарного типа таково, что в нем используются достоинства аналоговых и цифровых приборов. Например, управляемый микропроцессором жидкокристаллический экран, представляет информацию в удобном для восприятия виде. Кроме цифровых показаний, он выдает изображение шкалы и стрелки в соответствующем сигналу положении, как на аналоговом мультиметре.

Простейшая схема

На рисунке представлена принципиальная схема мультиметра. Это самый простой вариант. Как видим, он имеет три шунтирующих резистора номиналами 0,5 Ом, 4,6 Ом и 46,3 Ом. В режиме миллиамперметра он обеспечивает, при подключении к соответствующим выводам, измерение силы тока в трех диапазонах: 300 мА, 30 мА и 3 мА. Шунты необходимы для защиты мультиметра и измерения тока в различных диапазонах.

Добавочные резисторы номиналом 950 Ом, 10 кОм и 100 кОм предназначены для измерения напряжения в трех диапазонах: 3 В, 30 В и 300 В. Сопротивление измеряется при подсоединении к контактам Rx измеряемой нагрузки. Перед замером, при закороченных контактах измерительных щупов, переменным резистором R3 выставляется ноль на шкале измерения сопротивления. Данный тестер предназначен только для измерения постоянного тока. Для того чтобы он мог измерять переменный ток, в схему необходимо ввести выпрямительные диоды. Это связано с тем, что магнитоэлектрический механизм микроамперметра, в силу своего принципа действия, может измерять только постоянный ток.

Принципиальная схема мультиметра, если он стрелочный, меняется от прибора к прибору незначительно. Могут быть другие номиналы сопротивлений из-за использования различных микроамперметров, но суть не изменится. Поэтому ремонтировать их просто, в отличие от цифровых тестеров.

Структурная схема цифрового прибора

В настоящее время большинство мультиметров, выпускаемые промышленностью, являются цифровыми. Оно и понятно. Благодаря использованию современной элементной базы с большим входным сопротивлением, появилась возможность создавать многоразрядные точные аналогово-цифровые преобразователи электрического сигнала. Это в свою очередь позволило уменьшить погрешность измерения, а применение цифровой индикации обеспечило легкое считывание информации. В случае со стрелочными мультиметрами это затруднено, так как при погрешности 0,2% и выше прочитать точное показание будет практически невозможно из-за плотного расположения делений на шкале.

Принципиальная схема мультиметра, основанная на интегральных микросхемах сильно зависит от вида используемых микросхем, поэтому для разбора принципа работы прибора удобнее пользоваться структурной схемой, которая одинакова для всех цифровых тестеров. На рисунке изображена структурная схема цифрового мультиметра. На ней видно, как происходят измерения постоянного и переменного токов, а также сопротивлений.

Аттенюатор и операционный усилитель

Аттенюатор – это устройство в схеме, уменьшающее входной сигнал в определенное количество раз для того, чтобы он находился в нормированном диапазоне, например, 0-1 мВ. В зависимости от конкретной реализации диапазон может быть другим.

Операционный усилитель очень чувствительный и имеет большой коэффициент усиления. Он реагирует на единицы микровольт на своем входе, а усиление позволяет выставлять от единицы до нескольких тысяч. При этом у него огромное входное сопротивление, из-за чего он практически не вносит погрешностей. На его основе можно создать очень точные мультиметры и другие измерительные устройства. Так вот, при поступлении на вход операционного усилителя напряжения с аттенюатора, он усилит его в конкретное число раз, и также не превысит допустимые пределы.

АЦП

На вход аналогово-цифрового преобразователя (АЦП) поступит сигнал, не превышающий диапазон преобразования. Предварительное усиление требовалось, чтобы преобразователь мог произвести его оцифровку и вывести на цифровой индикатор. Схемы аналогово-цифровых преобразователей весьма разнообразны, и некоторые из них выполнены в виде отдельной микросхемы, что очень удобно при создании компактных мультиметров.

Прецизионный выпрямитель и коммутатор

При измерении переменных токов дополнительно применяется прецизионный выпрямитель. Когда необходимо измерить сопротивление, то оно подключается к преобразователю, представляющего собой эталонный генератор тока с делителями. Этот ток проходит через измеряемое сопротивление, на нем происходит падение напряжения. Это падение усиливается, оцифровывается и выводится на цифровой индикатор.

При любых измерениях сигналы поступают через коммутатор. Он может быть механическим или электронным. На автономных ручных мультиметрах используется механический переключатель.

Хотя принципиальная схема мультиметра цифрового типа не представлена, проанализировав устройство прибора, можно найти отличия между ним и аналоговым типом.

Стрелочные мультиметры, чтобы произвести измерение какого-либо параметра, преобразуют его в силу тока и затем только измеряют. А цифровые тестеры, используя преимущества операционных усилителей, их огромное внутреннее сопротивление, все входящие сигналы преобразуют в напряжение и потом только проводят измерения.

Основные обозначения

Большинство мультиметров выглядят как небольшие коробочки, в верхней части которых расположена шкала со стрелочным механизмом или жидкокристаллический экран. Обозначения на мультиметре практически одинаковы и не зависят от вида прибораи схемы. Так, ниже экрана располагается переключатель режимов измерения. Вокруг отображаются значки, характеризующие тип и диапазон измеряемой величины:

С правой стороны имеются три гнезда. Верхнее, с цифрой 10А, используется при измерении постоянного тока до 10 ампер. Среднее применяется для измерения во всех остальных случаях. Нижнее гнездо для присоединения нулевого провода, рядом изображен знак заземления, как на схеме. Количество диапазонов и их пределы, типы измеряемых величин могут отличаться, но в основном будут совпадать.

На устройство и внешний вид влияют также и дополнительные возможности закладываемые производителем. Так, сейчас появились тестеры со встроенными токоизмерительными клещами. Они позволяют измерять ток без разрыва проводника, достаточно обхватить его клещами.

В комплект поставки, кроме мультиметра, входят щупы и инструкция по эксплуатации. В ней обычно даются принципиальная схема, технические характеристики, правила пользования прибором и требования по техники безопасности.

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель - тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR - mikro». Остановило то, что уж больно здорово хвалили - «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось - выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось - не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» - со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества - пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой - далеко не миниатюрный.

Обратная сторона - плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал - способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления - резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем - соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее - враг хорошего» трогать его не позволил - сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

В практической работе с компактными и малогабаритными (а их сейчас большинство) электрическими схемами и устройствами приходится очень часто подключаться для измерений параметров цепей в очень малоемких пространствах, где точки измерений буквально "сидят" друг на друге. О качестве применяемых нами измерительных приборов говорить не нужно - китайский одноразовый ширпотреб.

Для того, чтобы можно такими приборами пользоваться - их нужно " довести до ума". Раскажу на примере бытового тестера (мультиметра). Самое слабое звено - контактные гнезда на самом приборе и щупы с проводами. Поэтому решил сделать самодельные. Я гнезда переделал под разъемы типа "тюльпан", которые вставляются на свои места плотно, без люфтов, а значит и качество измерений будет более приемлемым. Далее провода со щупами выкинул сразу. Провода в плохой, ломкой изоляции, а щупы неудобны для " подлезания" к точкам измерения. Соответственно и проводу использовал "тюльпановскую". А вот для щупов использовал:

использованные корпуса гелиевых авторучек. Подпаял к проводам иголки, просверлил в верхней части корпусов отверстия, протянул провода с иголками, ввел иголки в вместо пишущих узлов, посадил на клей. Теперь я могу подключаться к любой точке схемы и через изоляцию, и через лаковые покрытия, и буквально расположенные друг на друге. Советую! Сэкономите и нервы, и время!

Начало

Да, эта тема многократно обсуждалась, в том числе и здесь. Я собрал два варианта схемы Ludens и они очень хорошо себя зарекомендовали, тем не менее, у всех предлагаемых ранее вариантов есть недостатки. Шкалы приборов со стрелочными индикаторами очень нелинейны и требуют для калибровки много низкоомных резисторов, эти шкалы надо рисовать и вставлять в головки. Приборные головки велики и тяжелы, хрупки, а корпуса малогабаритных пластмассовых индикаторов обычно запаяны и они часто имеют мелкую шкалу. Слабым местом почти всех предыдущих конструкций является их низкая разрешающая способность. А для конденсаторов LowESR как раз надо измерять сотые доли Ома в диапазоне от нуля до половины Ома. Предлагались также приборы на основе микроконтроллеров с цифровой шкалой, но не всякий занимается микроконтроллерами и их прошивками, устройство получается неоправданно сложным и относительно дорогим. Поэтому в журнале «Радио» сделали разумную рациональную схему - цифровой тестер есть у любого радиолюбителя, да и стоит он копейки.

Я внес минимальные изменения. Корпус - от неисправного «электронного дросселя» для галогеновых ламп. Питание - батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель - измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N , транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение - так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 - перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens .
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

Файлы

Печатная плата:
🕗 25/09/11 ⚖️ 14,22 Kb ⇣ 668 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!